Prevalidation and Validation Study Plan for Minced Testes Assay

Gary Timm
Presented to EDMVS
June 4, 2003

Objectives

- To assess relevance of minced testes assay for detecting compounds that affect steroidogenesis
 - Measure change in testosterone production relative to controls
- To assess reliability
 - Measure variability in testosterone measurements of participating laboratories
 - Measure variability in mean response among participating laboratories

Data Interpretation

- Assay will detect interference with key steps in the steroidogenic pathway:
 - Decreases in steroidogenic signal transduction
 - Interference with the transport of cholesterol from the cytoplasm to the mitochondria via StAR
 - Inhibition of enzymes involved in the conversion of cholesterol to testosterone

Data Interpretation (2)

- Interference with steroidogenesis will result in a decrease or increase in measured testosterone relative to controls
- Assay is unlikely to detect
 - Inhibition of aromatase
 - 5α-reductase inhibitors

Inhibition of these downstream steps would result in an increase in testosterone production

Basic Protocol

- Optimization study will determine parameters of protocol
- Replicate Runs
 - 3 with hCG stimulation
 - 3 without hCG stiulation
- Dosing
 - 3 dose levels
 - 1 positive control
 - Media control
- Sample 3-4 time points

Prevalidation Studies

Purpose:

- To obtain initial information on protocol transferability
- Primary test of relevance

Studies:

- Protocol optimization study
- Baseline study
- Pilot study
- Multichemical study

Prevalidation Studies

- Optimization of minced testes protocol has been completed
- Baseline study
 - Two labs to run optimized protocol
 - 3 runs without hCG
 - 3 runs with hCG challenge
 - Measure testosterone formation and LDH
 - No test chemical
 - 3 replicates

Prevalidation Studies (2)

- Pilot studies
 - Aminoglutethimide (positive control)
 - Ethane dimethanesulfonate (Leydig cell toxicant)
 - Two labs
 - Three replicates
- Multichemical studies
 - 9 challenge chemicals
 - Two labs
 - Two replicates

Selection of Reference Chemicals

- Selected for known mode of action
- Limited by availability
 - Pharmaceuticals are difficult at best to procure because the require material transfer agreements
 - Many pharmaceuticals are not available from the manufacturer
- Thus, we will have to duplicate many of the chemicals in validation that were used in prevalidation, if we want to cover modes of action

Reference Chemicals

Chemical	Mode 1	Mode 2	Preval	Val
Aminogluteth imide	P450scc	Aromatase	+ Cont	+ Cont
Bisphenol A	Inhibits C-AMP		X	
Dimethoate	StAR inhibitor		X	X
EDS	Leydig cell toxicant		X	X
Fenarimol	Aromatase		X	

Reference Chemicals

Chemical	Mode 1	Mode 2	Preval	Val
Flutamide	P450c17		X	
Genistein	3β-HSD inhibitor		X	X
Ketoconazole	P450scc	Aromatase	X	
Lindane	Inhibits C-AMP			Х
MK-434	5α reductase		?	
Vinclozolin	Negative chemical		X	X

Selection of Laboratories

- Laboratories to be selected by the Contractor by open solicitation
- Laboratories must be:
 - Independent
 - Experienced in:
 - In vitro test methods
 - Cell and tissue culturing
 - Test chemical administration
 - Enzyme kinetics and inhibition studies
 - Knowledge of steroidogenesis
 - Compliance with GLP

Measurements of Reliability

- 1. Coefficient of variation across studies
 - Study standard deviation/mean of studies
 - Reflects the spread among study means in relation to their average value
- 2. Ratio of between- to within-study standard deviation
 - Standard deviation across studies/average standard error within studies
 - Reflects relative contribution to total variation of the variability among study means as compared to the precision within studies
- 3. Comparison of within-lab SD to Average within-lab SD
 - Standard deviation of lab I/ geometric mean within-lab SD
 - Measures the homogeneity of within study variation across laboratories
 - Can identify poor performing labs

Determination of Number of Laboratories

- Sensitivity analysis for each measure of reliability was prepared using literature values. (Fail, Gray Laskey)
- For Criterion 1 (CV interval factor):
 - 95% confidence interval factors were calculated as a function of the number of laboratories and the number of replicate determinations per laboratory.
 - A 95% confidence interval on the characteristic of interest is calculated by multiplying the point estimate by the confidence interval factor.
 - Confidence interval factor is sensitive to the number of labs and approaches 1 as the number of labs increases, flattens after ~8 labs
 - Criterion 1 is not sensitive to the number of replicate determinations per lab

Determination of Number of Laboratories (2)

- Criterion 2 (Lower and Upper confidence interval factor of between:within SD)
 - 95% confidence interval factors were calculated as a function of the number of laboratories and the number of replicate determinations per laboratory
 - Lower confidence interval is sensitive to both number of labs and number of replicates
 - Upper confidence level is sensitive only to the number of labs
 - Flattens out after ~8 labs

Determination of Number of Laboratories (3)

- Criterion 3 (Lower confidence factor of withinlaboratory standard deviations to average withinlaboratory standard deviation)
 - 95% confidence interval factors were calculated as a function of the number of laboratories and the number of replicate determinations per laboratory
 - Sensitive to number of replicates
 - Not sensitive to number of labs
 - Flattens after ~8 replicates

Determination of Number of Laboratories (4)

Conclusions

- Based on available data, 6-10 laboratories are needed to achieve a high confidence indication of assay reliability
- We shall select 6 laboratories as the actual variability in these studies should be less than in the literature where different protocols were used
- ~8 replicates are needed to obtain a high confidence estimate of within laboratory standard deviations.
 This information will be generated by the positive and negative controls.

Validation

6 labs

Baseline studies

- 3 runs without hCG
- 3 runs with hCG challenge
- Measure testosterone formation and LDH
- No test chemical

Pilot studies

- Aminoglutethimide (positive control)
- Ethane dimethanesulfonate (Leydig cell toxicant)

Validation

Coded sample studies

- 5 chemicals
- 2 replicates per laboratory
- Aminogluthethimide is positive control
- Vinclozolin (AR antagonist) used as negative chemical
- Will modify validation study plan based on results of prevalidation work

Reference Chemicals by Mode of Action

Mode of Action	Prevalidation	Validation
C-AMP inhibitor	BPA	Lindane
StAR inhibitor	Dimethoate	Dimethoate
P450scc	+ Cont Ketoconazole	+ Cont
P450c17	Flutamide	
3β-HSD	Genestein	Genestein
5α reductase	MK-434	
Aromatase	Fenarimol	
Negative	Vinclozolin	Vinclozolin

Data Analysis

- Intra-Laboratory Analysis
 Assess chemically related testosterone inhibition within laboratories
- Inter-Laboratory Analysis
 Assess extent of heterogeneity of chemical inhibition effects across laboratories

Data Analysis Strategy

- Large numbers of comparisons can be identified, for both intra and inter laboratory analyses
 - Baseline studies
 - Preval: 2 labs x 3 replicates = 6
 - Validation: 6 labs x 2 replicates = 12
 - Positive Control (aminoglutethimide)
 - Preval pilot: 2 labs x 3 replicates = 6
 - Validation pilot: 6 labs x 2 replicates = 12
 - Preval high dose: 2 labs x 9 chems x 2 replicates = 36
 - Validation high dose: 6 labs x 5 chems x 2 reps = 60

Data Analysis Strategy (2)

Preval/val chemicals

```
2 labs x 4 chems x 2 replicates = 16
6 labs x 4 chems x 2 replicates = 48
```

- **Preval chemicals**: 2 labs x 5 chems x 2 replicates = 20
- Validation chemicals: 6 labs x 1 chem x 2 replicates = 12

Total of 228 studies

- In validation study carry out each analysis considered a priori to be possibly toxicologically relevant
- Make recommendations in final report concerning which analyses are most informative and so should be included in assay standard practice

Intra-Laboratory Analysis

- Principal Endpoints
 - Cumulative Testosterone Concentration
 - Cumulative LDH Concentration(3 doses and 3-4 time points)
- Similar analyses for both endpoints
- Variation in Effects
 - Across chemicals
 - Across graded chemical doses

Components of Variation

- Rat-to-rat
- Testis-to-testis within rat
- Fragment-to-fragment within testis
- Block of assays performed simultaneously (e.g. day-today)
- Variance components need to be accounted for in the statistical analysis

Inter-Laboratory Analysis

- Focus on primary and secondary responses from intra-laboratory analysis
- Assess extent of heterogeneity of responses across laboratories
- Reference
 - American Society for Testing and Materials (1988). "Standard Practice for Conducting an Inter-Laboratory Study to Determine the Precision of a Test Method"

Measures of Variation Among Laboratories

- Heterogeneity of within-laboratory means across laboratories
- Heterogeneity of within-laboratory standard deviations across laboratories
- Ratio of laboratory-to-laboratory standard deviation to average within-laboratory standard deviation
- Coefficient of variation across laboratories

Reporting

- Each laboratory will report:
 - That protocol was followed
 - Difficulties in executing the studies
 - Summary of data
 - Raw data
- Validation Study Report

Graphical Summary Displays

- Prepare control charts and associated control limits
- Display intra-laboratory statistics side-by-side across
 - Chemicals
 - Graded doses
 - Laboratories
- Identify outlying laboratories and nature of discrepancies